On the k-tuple domination number of graphs^{*}

Abel Cabrera-Martínez Departamento de Matemáticas, Universidad de Córdoba

May 21, 2023

Abstract

Let $k \ge 1$ be an integer and G be a graph of minimum degree $\delta(G) \ge k-1$. A set $D \subseteq V(G)$ is said to be a k-tuple dominating set of G if $|N[v] \cap D| \ge k$ for every vertex $v \in V(G)$. The minimum cardinality among all k-tuple dominating sets is the k-tuple domination number of G. In this work, we present new tight bounds on the k-tuple domination number of a graph. Some bounds can also be seen as relationships between this parameter and several other domination parameters in graphs.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). Given a vertex $v \in V(G)$, N(v) denotes the open neighbourhood of v in G. Given a vertex $v \in V(G)$ and a set $D \subseteq V(G)$, we denote by $\deg_D(v) = |N(v) \cap D|$ the number of vertices in D adjacent to v and let $\deg_D[v] = |N[v] \cap D|$. The minimum and maximum degrees of G will be denoted by $\delta(G)$ and $\Delta(G)$, respectively.

Fink and Jacobson [5,6] introduced the concept of k-domination in graphs. Given a graph G, a set $D \subseteq V(G)$ is said to be a k-dominating set of G if $\deg_D(v) \ge k$ for every $v \in V(G) \setminus D$. The k-domination number of G, denoted by $\gamma_k(G)$, is the minimum cardinality among all k-dominating sets of G.

Harary and Haynes [8,9] introduced the concept of k-tuple domination in graphs. Given a graph G and a positive integer $k \leq \delta(G) + 1$, a set $D \subseteq V(G)$ is said to be a k-tuple dominating set of G if deg_D[v] $\geq k$ for every $v \in V(G)$. Observe that the 1-tuple dominating set of G is the same as the dominating set of G. The k-tuple domination number of G, denoted by $\gamma_{\times k}(G)$, is the minimum cardinality among all k-tuple dominating sets of G. For a comprehensive survey on k-tuple domination in graphs, we suggest the chapter [7] due to Hansberg and Volkmann. In addition, some recent results on this parameter can be found in [1–3, 10, 11].

In this work, we present new tight bounds on the k-tuple domination number of a graph. Some bounds can also be seen as relationships between this parameter and several other domination parameters in graphs.

2 Results

Hansberg and Volkmann [7] put into context all relevant research results on k-tuple domination that have been found up to 2020. In that chapter, they posed the following open problem.

^{*}The results presented in this work have been published in [2] and [3].

Problem 2.1. (Problem 5.8, p. 194, [7]) Give an upper bound for $\gamma_{\times k}(G)$ in terms of $\gamma_k(G)$ for any graph G of minimum degree $\delta(G) \ge k - 1$.

The following theorem provides a solution to the previous problem.

Theorem 2.2. Let $k \ge 2$ be an integer. For any graph G with $\delta(G) \ge k-1$,

$$\gamma_{\times k}(G) \le k\gamma_k(G) - (k-1)^2.$$

The next theorem provides a new upper bound for the k-tuple domination number of a graph G in terms of the k-domination number and the k'-tuple domination number $(k' \in \{1, \ldots, k-1\})$.

Theorem 2.3. Let k', k be two integers such that $k > k' \ge 1$. For any graph G with $\delta(G) \ge k - 1$,

$$\gamma_{\times k}(G) \le \gamma_{\times k'}(G) + (k - k')\gamma_k(G).$$

The following result is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let $k \ge 2$ be an integer. For any graph G with $\delta(G) \ge k-1$,

- (i) $\gamma_{\times k}(G) \leq (k-1)\gamma_k(G) + \gamma(G).$
- (ii) $\gamma_{\times k}(G) \leq \gamma_{\times (k-1)}(G) + \gamma_k(G).$

Favaron et al. [4] showed that $\gamma_{\times k}(G) \ge \gamma_{k'}(G) + k - k'$ for any graph G with $\delta(G) \ge k > k' \ge 1$. The following result improves the previous one whenever $diam(G) \ge 5$.

Theorem 2.5. Let k', k be two integers such that $k > k' \ge 1$. For any connected graph G with $\delta(G) \ge k$,

$$\gamma_{\times k}(G) \ge \gamma_{k'}(G) + (k - k') \left\lceil \frac{diam(G) + 1}{5} \right\rceil.$$

Harary and Haynes [9] showed that $\gamma_{\times k}(G) \geq \frac{2kn-2m}{k+1}$ for any graph G of order n and size m with $\delta(G) \geq k-1$. The following result improves the bound above for any graph with minimum degree at least k.

Proposition 2.6. Let $k \ge 2$ be an integer. For any graph G of order n and size m with $\delta(G) \ge k$,

$$\gamma_{\times k}(G) \ge \frac{(\delta(G) + k)n - 2m}{\delta(G) + 1}.$$

The following result provides a new upper bound on $\gamma_{\times k}(G)$ in terms of the order and the maximum degree of a graph G with minimum degree $\delta(G) \ge k$.

Proposition 2.7. Let $k \ge 2$ be an integer. For any graph G of order n with $\delta(G) \ge k$,

$$\gamma_{\times k}(G) \le \frac{k\Delta(G)}{k\Delta(G)+1} n.$$

References

- S. Alipour, A. Jafari, M. Saghafian, Upper bounds for k-tuple (total) domination numbers of regular graphs, Bull. Iran. Math. Soc. 46, (2020)573-577.
- [2] A. Cabrera-Martínez, Some new results on the k-tuple domination number of graphs, RAIRO -Operations Research 56, (2022) 3491–3497.
- [3] A. Cabrera-Martínez, A note on the k-tuple domination number of graphs, ARS Math. Contemp. 22, (2022) P4.03.
- [4] O. Favaron, M.A. Henning, J. Puech, D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, Discrete Math. 231, (2001) 143-151.
- [5] J.F. Fink, M.S. Jacobson, n-domination in graphs, in: Graph theory with applications to algorithms and computer science, Wiley-Intersci. Publ., Wiley, New York, (1985) 283-300.
- [6] J.F. Fink, M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph theory with applications to algorithms and computer science, Wiley-Intersci. Publ., Wiley, New York, (1985) 301-311.
- [7] A. Hansberg, L. Volkmann, *Multiple Domination*, In: Topics in Domination in Graphs. Developments in Mathematics, Springer (2020) 151–203.
- [8] F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155, (1996) 99-105.
- [9] F. Harary, T.W. Haynes, Double domination in graphs, Ars Combin. 55, (2000) 201–213.
- [10] N. Jafari Rad, Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph, Australas. J. Comb. 73, (2019) 280-290.
- [11] M.H. Nguyen, M.H. Ha, D.N. Nguyen, et al., Solving the k-dominating set problem on very large-scale networks, Comput Soc Netw. 7, (2020) 4.