Double domination in rooted product graphs

Alejandro Estrada Moreno
Departament d'Enginyeria Informàtica i Matemàtiques / Universitat Rovira i Virgili

Abel Cabrera Martínez
Departamento de Matemática / Universidad de Córdoba

May 26, 2023

Abstract

A set D of vertices of a graph G is a double dominating set of G if $|N[v] \cap D| \geq 2$ for every $v \in V(G)$, where $N[v]$ represents the closed neighbourhood of v. The double domination number of G is the minimum cardinality among all double dominating sets of G. In this article, we show that if G and H are graphs with no isolated vertex, then for any vertex $v \in V(H)$ there are six possible expressions, in terms of domination parameters of the factor graphs, for the double domination number of the rooted product graph $G \circ_{v} H$. Additionally, we characterize the graphs G and H that satisfy each of these expressions.

1 Introduction

Domination in graphs is well studied in graph theory and the literature on this subject has been surveyed and detailed in the books [1,2]. In [3], Harary and Haynes extended the idea of domination in graphs to the more general notion. They introduced the concept of double domination in graphs and, more generally, the concept of k-tuple domination. Given a graph G of minimum degree $\delta(G)$ and a positive integer $k \leq \delta(G)+1$, a set $D \subseteq V(G)$ is said to be a k-tuple dominating set of G if $|N[v] \cap D| \geq k$ for every vertex $v \in V(G)$, where $N[v]$ represents the closed neighbourhood of v. The k-tuple domination number of G, denoted by $\gamma_{\times k}(G)$, is the minimum cardinality among all k-tuple dominating sets of G. A $\gamma_{\times k}(G)$-set is a k-tuple dominating set of cardinality $\gamma_{\times k}(G)$. The cases $k=1$ and $k=2$ correspond to domination and double domination, respectively. In such a case, $\gamma(G)$ and $\gamma_{\times 2}(G)$ denote the domination number and the double domination number of graph G, respectively.

For any graph G, a set D is a 2-dominating set of G if $|N(v) \cap D| \geq 2$ for every vertex $v \in V(G) \backslash D$, where $N(v)$ represents the open neighbourhood of v. The 2-domination number of G, denoted by $\gamma_{2}(G)$, is the minimum cardinality among all 2-dominating sets of G.

The double domination in graphs has been extensively studied. In [4], Hansberg and Volkmann put into context all relevant research results on double domination that have been found up to 2020 . In addition, we suggest the recent papers [5-8]. However, this classic domination parameter has not yet been studied in rooted product graphs. With this work we pretend to solve this gap in the theory.

2 Results

Let G and H be two graphs with no isolated vertex and v be a vertex of H, which we called root vertex. The rooted product graph $G \circ_{v} H$ is defined as the graph obtained from G and H by taking one copy of G and $n(G)$ copies of H and identifying the $i^{\text {th }}$ vertex of G with the root vertex v in the $i^{t h}$ copy of H for every $i \in\{1,2, \ldots, n(G)\}$.

We now proceed to introduce a new domination parameter which plays an important role in one of the possible values that the double domination number of the rooted product graphs takes.

Let $A, B \subseteq V(G)$. We say that an ordered pair (A, B) of disjoint sets A and B is a quasi-double dominating pair of G if $A \cup B \in \mathcal{D}_{2}(G)$ and $B \in \mathcal{D}_{\times 2}(G-A)$. The quasi-double domination number of G, denoted by $\gamma_{q \times 2}(G)$, is defined to be

$$
\gamma_{q \times 2}(G)=\min \left\{|A|+|B|: A \cup B \in \mathcal{D}_{2}(G) \text { and } B \in \mathcal{D}_{\times 2}(G-A)\right\}
$$

Theorem 2.1. Let G and H be two graphs with no isolated vertex. If $v \in V(H)$, then

$$
\gamma_{\times 2}\left(G \circ_{v} H\right) \in\left\{\begin{array}{l}
n(G) \gamma_{\times 2}(H), \\
\gamma_{q \times 2}(G)+n(G)\left(\gamma_{\times 2}(H)-1\right), \\
\gamma_{2}(G)+n(G)\left(\gamma_{\times 2}(H)-1\right), \\
\gamma(G)+n(G)\left(\gamma_{\times 2}(H)-1\right), \\
n(G)\left(\gamma_{\times 2}(H)-1\right), \\
\gamma_{\times 2}(G)+n(G)\left(\gamma_{\times 2}(H)-2\right)
\end{array}\right\}
$$

Now, we proceed to show some simple examples in which we can observe that the expressions of $\gamma_{\times 2}\left(G \circ_{v} H\right)$ given in Theorem 2.1 are realizable.

Example 1. Let G be a graph with no isolated vertex. If H is C_{4}, C_{5} or one of the graphs shown in Figure 1, then the resulting values of $\gamma_{\times 2}\left(G \circ_{v} H\right)$ for some specific roots are described below.
(i) $\gamma_{\times 2}\left(G \circ_{v} C_{4}\right)=3 n(G)=n(G) \gamma_{\times 2}\left(C_{4}\right)$.
(ii) $\gamma_{\times 2}\left(G \circ_{v} C_{5}\right)=3 n(G)=n(G)\left(\gamma_{\times 2}\left(C_{5}\right)-1\right)$.
(iii) $\gamma_{\times 2}\left(G \circ_{v} H_{1}\right)=\gamma_{\times 2}(G)+2 n(G)=\gamma_{\times 2}(G)+n(G)\left(\gamma_{\times 2}\left(H_{1}\right)-2\right)$.
(iv) $\gamma_{\times 2}\left(G \circ_{v} H_{2}\right)=\gamma(G)+2 n(G)=\gamma(G)+n(G)\left(\gamma_{\times 2}\left(H_{2}\right)-1\right)$.
(v) $\gamma_{\times 2}\left(G \circ_{v} H_{3}\right)=\gamma_{2}(G)+2 n(G)=\gamma_{2}(G)+n(G)\left(\gamma_{\times 2}\left(H_{3}\right)-1\right)$.
(vi) $\gamma_{\times 2}\left(G \circ_{v} H_{4}\right)=\gamma_{q \times 2}(G)+2 n(G)=\gamma_{q \times 2}(G)+n(G)\left(\gamma_{\times 2}\left(H_{4}\right)-1\right)$.

From now on, we show the results that allow us to characterize the graphs G, H, as well as the root $v \in V(H)$ that satisfy each of the six expressions given in Theorem 2.1.

Theorem 2.2. If $\gamma_{\times 2}(G)<n(G)$, then the following statements are equivalent.
(i) $\gamma_{\times 2}\left(G \circ_{v} H\right)=\gamma_{\times 2}(G)+n(G)\left(\gamma_{\times 2}(H)-2\right)$.
(ii) $\gamma_{\times 2}(H-v)=\gamma_{\times 2}(H)-2$.

Theorem 2.3. Let G and H be two graphs with no isolated vertex and $v \in V(H)$. Then $\gamma_{\times 2}\left(G \circ_{v}\right.$ $H)=n(G)\left(\gamma_{\times 2}(H)-1\right)$ if and only if one of the following conditions holds.

Figure 1: The set of black-coloured vertices forms a $\gamma_{\times 2}\left(H_{i}-v\right)$-set, for $i \in\{1,2,3,4\}$.
(i) $\gamma_{\times 2}(G)=n(G)$ and $\gamma_{\times 2}(H-v)=\gamma_{\times 2}(H)-2$.
(ii) $\gamma_{\times 2}(H-v) \geq \gamma_{\times 2}(H)-1$ and there exists a set $W \subseteq V(H) \backslash N[v]$ of cardinality $\gamma_{\times 2}(H)-2$ which is both a DDS of $H-N[v]$ and a TDS of $H-v$.
Theorem 2.4. Let G be a graph such that $\gamma_{\times 2}(G)<n(G)$. Let H be a graph with no isolated vertex and $v \in V(H)$. Then $\gamma_{\times 2}\left(G \circ_{v} H\right)=n(G) \gamma_{\times 2}(H)$ if and only if either $v \in \mathcal{S}(H)$ or the following conditions hold.
(i) $\gamma_{\times 2}(H-v) \geq \gamma_{\times 2}(H)$.
(ii) If $H-N[v]$ has no isolated vertices, then every subset of $V(H) \backslash N[v]$ of cardinality $\gamma_{\times 2}(H)-2$ is not a DDS of $H-N[v]$ or it is not a TDS of $H-v$.

Theorem 2.5. Let G and H be two graphs with no isolated vertex and $v \in V(H)$. Then $\gamma_{\times 2}\left(G \circ_{v}\right.$ $H)=\gamma(G)+n(G)\left(\gamma_{\times 2}(H)-1\right)$ if and only if the following conditions hold.
(i) $\gamma_{\times 2}(H-v)=\gamma_{\times 2}(H)-1$ and one of the following conditions holds.
(a) $\gamma(G)=\gamma_{2}(G)$ and there exists a $\gamma_{\times 2}(H)$-set containing the vertex v.
(b) $\gamma(G)<\gamma_{2}(G)$ and there exists a $\gamma_{\times 2}(H-v)$-set W such that $N(v) \cap W \neq \varnothing$.
(ii) If $H-N[v]$ has no isolated vertices, then every subset of $V(H) \backslash N[v]$ of cardinality $\gamma_{\times 2}(H)-2$ is not a $D D S$ of $H-N[v]$ or it is not a TDS of $H-v$.

Theorem 2.6. Let G be a graph with no isolated vertex such that $\gamma(G)<\gamma_{2}(G)<\gamma_{q \times 2}(G)$. Let H be a graph with no isolated vertex and $v \in V(H)$. Then $\gamma_{\times 2}\left(G \circ_{v} H\right)=\gamma_{2}(G)+n(G)\left(\gamma_{\times 2}(H)-1\right)$ if and only if the following conditions hold.
(i) $\gamma_{\times 2}(H-v)=\gamma_{\times 2}(H)-1$.
(ii) $N(v) \cap W=\varnothing$ for every $\gamma_{\times 2}(H-v)$-set W.
(iii) There exists a $\gamma_{\times 2}(H)$-set containing the vertex v.
(iv) If $H-N[v]$ has no isolated vertices, then every subset of $V(H) \backslash N[v]$ of cardinality $\gamma_{\times 2}(H)-2$ is not a $D D S$ of $H-N[v]$ or it is not a TDS of $H-v$.

3 Conclusions

Theorem 2.1 shows there are six possible expressions for the double domination number in rooted product graph $\gamma_{\times 2}\left(G \circ_{v} H\right)$. Moreover, we have been able to characterize the graphs G and H, and the root $v \in V(H)$, that satisfy five of these expressions through the Theorems 2.2, 2.3, 2.4, 2.5 and 2.6. For the case of the equality $\gamma_{\times 2}\left(G \circ_{v} H\right)=\gamma_{q \times 2}(G)+n(G)\left(\gamma_{\times 2}(H)-1\right)$, the corresponding characterization can be derived by eliminating the previous ones from the family of all graphs G and H with no isolated vertices and roots v of H.

References

[1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Chapman and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York, 1998.
[2] T. Haynes, S. Hedetniemi, P. Slater, Domination in Graphs: Volume 2: Advanced Topics, Chapman \& Hall/CRC Pure and Applied Mathematics, Taylor \& Francis, 1998.
[3] F. Harary, T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[4] A. Hansberg, L. Volkmann, Multiple domination, Vol. 64 of Developments in Mathematics, Springer, Cham, 2020, pp. 151-203.
[5] A. Cabrera-Martínez, New bounds on the double domination number of trees, Discrete Applied Mathematics 315 (2022) 97-103.
[6] A. Cabrera-Martínez, J. A. Rodríguez-Velázquez, A note on double domination in graphs, Discrete Applied Mathematics 300 (2021) 107-111.
[7] A. Cabrera Martínez, S. Cabrera García, J. A. Rodríguez-Velázquez, Double domination in lexicographic product graphs, Discrete Appl. Math. 284 (2020) 290-300.
[8] M. Hajian, N. J. Rad, A new lower bound on the double domination number of a graph, Discrete Applied Mathematics 254 (2019) 280-282.

