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Abstract

A set D of vertices of a graph G is a double dominating set of G if |[N[v] N D| > 2 for
every v € V(G), where N[v] represents the closed neighbourhood of v. The double domination
number of G is the minimum cardinality among all double dominating sets of G. In this article,
we show that if G and H are graphs with no isolated vertex, then for any vertex v € V(H) there
are six possible expressions, in terms of domination parameters of the factor graphs, for the
double domination number of the rooted product graph G o, H. Additionally, we characterize
the graphs G and H that satisfy each of these expressions.

1 Introduction

Domination in graphs is well studied in graph theory and the literature on this subject has been
surveyed and detailed in the books [1,2]. In [3], Harary and Haynes extended the idea of domination
in graphs to the more general notion. They introduced the concept of double domination in graphs
and, more generally, the concept of k-tuple domination. Given a graph G of minimum degree §(G)
and a positive integer k < 06(G) + 1, a set D C V(G) is said to be a k-tuple dominating set of G
if [IN[v] N D| > k for every vertex v € V(G), where N[v] represents the closed neighbourhood of v.
The k-tuple domination number of G, denoted by vxr(G), is the minimum cardinality among all
k-tuple dominating sets of G. A 4, (G)-set is a k-tuple dominating set of cardinality vxx(G). The
cases k = 1 and k = 2 correspond to domination and double domination, respectively. In such a
case, v(G) and vx2(G) denote the domination number and the double domination number of graph
G, respectively.

For any graph G, aset D is a 2-dominating set of G if [N (v)ND| > 2 for every vertex v € V(G)\D,
where N (v) represents the open neighbourhood of v. The 2-domination number of G, denoted by
v2(G), is the minimum cardinality among all 2-dominating sets of G.

The double domination in graphs has been extensively studied. In [4], Hansberg and Volkmann
put into context all relevant research results on double domination that have been found up to 2020.
In addition, we suggest the recent papers [5-8]. However, this classic domination parameter has
not yet been studied in rooted product graphs. With this work we pretend to solve this gap in the
theory.
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2 Results

Let G and H be two graphs with no isolated vertex and v be a vertex of H, which we called root
vertex. The rooted product graph G o, H is defined as the graph obtained from G and H by taking
one copy of G and n(G) copies of H and identifying the i'" vertex of G with the root vertex v in
the it" copy of H for every i € {1,2,...,n(G)}.

We now proceed to introduce a new domination parameter which plays an important role in one
of the possible values that the double domination number of the rooted product graphs takes.

Let A, B C V(G). We say that an ordered pair (A, B) of disjoint sets A and B is a quasi-double
dominating pair of G if AUB € Dy(G) and B € Dy2(G — A). The quasi-double domination number
of G, denoted by v4x2(G), is defined to be

Yax2(G) = min{|A| + |B|: AUB € D5(G) and B € Dy2(G — A)}.
Theorem 2.1. Let G and H be two graphs with no isolated vertex. If v € V(H), then

(G)'Yx2(H)7

Ygx2(G) +n(G)(yx2(H) — 1),
72(G) +n(G)(vx2(H) — 1),
Y(G) + n(G)(vx2(H) — 1),
n(G)(yx2(H) — 1),

x2(G) + n(G)(yx2(H) — 2)

vx2(Go, H) €

Now, we proceed to show some simple examples in which we can observe that the expressions of
vx2(G o, H) given in Theorem 2.1 are realizable.

Example 1. Let G be a graph with no isolated vertex. If H is Cy, C5 or one of the graphs shown
in Figure 1, then the resulting values of yx2(G o, H) for some specific roots are described below.

(i) Yx2(G oy C4) = 3n(G) = n(G)yx2(C4).

(i) ¥x2(G oy C5) = 3n(G) = n(G)(1x2(C5) — 1).

(il) Yx2(G op H1) = 7x2(G) + 2n(G) = 7x2(G) + n(G)(vx2(H1) — 2).
(iv) 7x2(G oy H2) = v(G) + 2n(G) = 7(G) + n(G) (yx2(H2) — 1).
(v) x2(G oy H3) = 72(G) + 2n(G) = 72(G) + n(G) (yx2(Hs) — 1).

(Vi) ¥x2(G oy Hy) = 74x2(G) 4 2n(G) = vgx2(G) + n(G) (yx2(Hs) — 1).

From now on, we show the results that allow us to characterize the graphs G, H, as well as the
root v € V(H) that satisfy each of the six expressions given in Theorem 2.1.

Theorem 2.2. If v42(G) < n(G), then the following statements are equivalent.
() ¥x2(G oy H) = 7x2(G) + n(G)(yx2(H) — 2).
(i) yx2(H —v) = yx2(H) — 2.

Theorem 2.3. Let G and H be two graphs with no isolated vertex and v € V(H). Then vx2(G o,
H) =n(G)(yx2(H) — 1) if and only if one of the following conditions holds.
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Figure 1: The set of black-coloured vertices forms a vxo(H; — v)-set, for i € {1,2,3,4}.

(i) vx2(G) = n(G) and yx2(H —v) = yx2(H) — 2.

(i) yw2(H —v) > yx2(H) — 1 and there exists a set W C V(H) \ N[v] of cardinality vx2(H) — 2
which is both a DDS of H — N[v] and a TDS of H —v.

Theorem 2.4. Let G be a graph such that v«2(G) < n(G). Let H be a graph with no isolated vertex
and v € V(H). Then vyx2(G o, H) = n(G)vyx2(H) if and only if either v € S(H) or the following
conditions hold.

(i) yx2(H = v) = 7x2(H).

(ii) If H— N[v] has no isolated vertices, then every subset of V(H)\ Nv] of cardinality vyx2(H) —2
is not a DDS of H — N[v] or it is not a TDS of H — v.

Theorem 2.5. Let G and H be two graphs with no isolated vertexr and v € V(H). Then yx2(G o,
H) =~(G) + n(G)(yx2(H) — 1) if and only if the following conditions hold.

(i) vx2(H —v) = yx2(H) — 1 and one of the following conditions holds.

(a) Y(G) = v2(G) and there exists a yx2(H)-set containing the vertex v.
(b) Y(G) < v2(G) and there exists a yx2(H — v)-set W such that N(v) "W # &.

(ii) If H— N[v] has no isolated vertices, then every subset of V(H)\ N[v] of cardinality vy« (H)—2
is not a DDS of H — N[v] or it is not a TDS of H — v.

Theorem 2.6. Let G be a graph with no isolated vertex such that v(G) < v2(GQ) < Ygx2(G). Let H
be a graph with no isolated vertex and v € V(H). Then yx2(G oy H) = v2(G) + n(G)(yx2(H) — 1)
if and only if the following conditions hold.

(1) 7><2( ):’YXQ(H)—l.

(i) Nw)NW = & for every yx2(H — v)-set W.
) There exists a yx2(H)-set containing the vertezx v.
)

(iii

(iv) If H— N[v] has no isolated vertices, then every subset of V(H)\ N[v] of cardinality yx2(H)—2
is not a DDS of H — N[v] or it is not a TDS of H — v.
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Conclusions

Theorem 2.1 shows there are six possible expressions for the double domination number in rooted
product graph vx2(G o, H). Moreover, we have been able to characterize the graphs G and H, and
the root v € V(H), that satisfy five of these expressions through the Theorems 2.2, 2.3, 2.4, 2.5 and
2.6. For the case of the equality yx2(G 0oy H) = vqx2(G) + n(G)(vx2(H) — 1), the corresponding
characterization can be derived by eliminating the previous ones from the family of all graphs G and
H with no isolated vertices and roots v of H.
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