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Abstract

A class of linear codes that extends classical Goppa codes to a non-commutative context
is defined. An efficient decoding algorithm, based on the solution of a non-commutative key
equation, is designed. We show how the parameters of these codes, when the alphabet is a finite
field, may be adjusted to propose a McEliece-type cryptosystem.

1 Skew Goppa codes
The results of this talk can be found in [3, 4]. Let R = L[x;σ, ∂] be an Ore extension of a field.
Let F ⊆ L be a subfield such that [L : F ] = m. Let g ∈ R be a nonzero twosided polynomial,
α0, . . . , αn−1 ∈ L be P-independent elements such that (x− αi, g)` = 1 for all 0 ≤ i ≤ n− 1, hi ∈ R
such that deg(hi) < deg(g) and (x − αi)hi − 1 ∈ Rg, and η0, . . . , ηn−1 ∈ L∗. A (generalized) skew
differential Goppa code C ⊆ Fn is defined as

C =
{
(c0, . . . , cn−1) ∈ Fn |

∑n−1
i=0 hiηici ∈ Rg

}
.

We say that {α0, . . . , αn−1} are the positional points, g is the skew differential Goppa polynomial
and h0, . . . , hn−1 are the parity check polynomials.

For a received word r = c+ e ∈ Fn, where c ∈ C and e =
∑ν
j=1 ejεkj with ej 6= 0 for 1 ≤ j ≤ ν,

The syndrome polynomial is defined and computed as

s =

n−1∑
i=0

hiηiri.

We define the error locator polynomial as

λ =
[
{x− αkj | 1 ≤ j ≤ ν}

]
`
.

Then deg(λ) ≤ ν and, for all 1 ≤ j ≤ ν, there exists ρkj ∈ R such that deg(ρkj ) ≤ ν − 1 and

λ = ρkj (x− αkj ).

1



XIII Encuentro Andaluz de Matemática Discreta, 5 al 7 de julio de 2023, Cádiz, España. 2

The error evaluator polynomial is defined as

ω =

ν∑
j=1

ρkjηkjej .

It follows that deg(ω) < ν.

Theorem 1.1. The error locator λ and the error evaluator ω polynomials satisfy the non-commutative
key equation

ω = κg + λs, (1)

for some κ ∈ R. Assume that ν ≤ t =
⌊
deg g
2

⌋
. Let uI , vI and rI be the Bezout coefficients returned

by the left extended Euclidean algorithm (LEEA) with input g and s, where I is the index determined
by the conditions deg rI−1 ≥ t and deg rI < t. Then there exists h ∈ R such that κ = huI , λ = hvI
and ω = hrI .

This theorem allows to use the LEEA to solve the key equation. Decoding failures, which can
appear when (λ, ω)` 6= 1, are solved in a similar way to [2].

2 A McEliece cryptosystem based on skew Goppa codes
When Fq = F ⊆ L = Fqm and ∂ = 0, with q = pd, we propose a key encapsulation mechanism based
in McEliece and Niederreiter’s cryptosystems (see [1,5,6]). Assume σ(a) = ap

h

and let δ = (h, dm),
µ = dm

δ . Then K = Fpδ . Then it follows

max

{
n

10t
,

nδ

d(pδ − 1)

}
≤ m ≤ n

4t
and δ | dm. (2)

Our proposal of a McEliece cryptosystem follows the dual version of Niederreiter [6], by means
of a key encapsulations mechanism like the one proposed in [1].

2.1 Key schedule
The inputs are n � t and F = Fq with q = pd. In order to generate the public and private keys
for a McEliece type cryptosystem, parameters m, δ, h have to be found. The values of m, δ can be
computed randomly via an exhaustive search looking for pairs satisfying (2). We set k = n−2t

⌊
n
4t

⌋
,

the smaller possible dimension. Next pick randomly h ≤ dm such that (h, dm) = δ, and let µ = dm
δ ,

L = Fqm , K = Fpδ and σ = τh : L → L. Fix a basis of L over F and denote v : L → Fm the map
providing the coordinates with respect to this basis. Let also denote R = L[x;σ].

Our set of positional points are going to be selected amongst the points in a maximal left P-
independent set. We randomly pick a normal basis {α, σ(α), . . . , σµ−1(α)} and a primitive element
γ of L. Let

P =
{
γi σ

j+1(α)
σj(α) | 0 ≤ i ≤ p

δ − 2, 0 ≤ j ≤ µ− 1
}

The list E = {α0, . . . , αn−1} of positional points is obtained by a random selection of n points in P.
The skew Goppa polynomial is twosided, hence g = gxa where g ∈ Z(R) = K[xµ]. Since

0 /∈ E, if g is irreducible as polynomial in K[xµ], we get (g, x− αi)` = 1 for all αi ∈ E. Hence
we randomly choose a monic irreducible polynomial g ∈ K[y] such that deg(g) = b2t/µc and set
g = g(xµ)x2t mod µ.



XIII Encuentro Andaluz de Matemática Discreta, 5 al 7 de julio de 2023, Cádiz, España. 3

Finally, the right extended Euclidean algorithm allows to compute h0, . . . , hn−1 ∈ R such that,
for each 0 ≤ i ≤ n− 1, deg(hi) < 2t and

(x− αi)hi − 1 ∈ Rg.

In fact deg(hi) = 2t− 1 by a degree argument.
A parity check matrix for our code is

H =
(
v(σ−j(hi,j)ui)

)
0≤j≤2t−1
0≤i≤n−1

∈ F (2tm)×n

where hi =
∑2t−1
j=0 hi,jx

j . Once H is computed, the public key of our cryptosystem can be computed
as follows: Let rH = rank(H) and R ∈ F (n−k−rH)×n a random matrix. The Hpub consists in the
non zero rows of the reduced row echelon form of the block matrix (HR ). If Hpub has less that n− k
rows, pick a new R. After this Key Schedule in the Key encapsulation mechanism, the different
values remain as follows:

Parameters t� n, q = pd and k = n− 2t
⌊
n
4t

⌋
.

Public Key Hpub ∈ F (n−k)×n.

Private Key L, σ, E = {α0, . . . , αn−1}, g and h0, . . . , hn−1.

The other parameters and computed elements are not used in the encryption and decryption pro-
cesses.

2.2 Encryption procedure: shared key derived by the sender
We pick a random vector, i.e. e ∈ Fn such that w(e) = t, with corresponding polynomial e(x) =∑ν
j=1 ejx

kj , ν ≤ t and 0 ≤ k1 < k2 < · · · < kν ≤ n− 1. The sender can easily derive a shared secret
key from e by means of a fixed and publicly known hash function H. The cryptogram is

s = eHT
pub ∈ Fn−k.

2.3 Decryption procedure: shared key derived by the receiver
The receiver can easily compute y ∈ Fn such that

s = yHT
pub

since Hpub is in row reduced echelon form. Let y(x) =
∑n−1
i=0 yix

i. The decoding algorithm in [2]
can be applied to y(x) in order to compute e. Then the shared secret key can be retrieved by the
receiver as H(e).
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