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Abstract

In this work, we study a generalization of the Cage Problem. We construct families of semi-
cubic graphs with fixed girth and few vertices with two different techniques, one of them consists
in identifying remote vertices (it is also used in different papers cited in this work to construct
bi-regular graphs), and the second consists in use some specific voltage graphs. Some of these
graphs are the smallest that exist because attain the lower bounds given previously.

1 Introduction
The graphs that we study in this work are simple and finite. The girth of a graph is the length of
the smallest cycle in the graph and a semi-cubic graph is a graph in which all vertices have degrees
either m or 3. An (3,m; g)-semi-cubic graph is a semi-cubic graph of fixed girth g, and a (3,m; g)-
semi-cubic cage is a (3,m; g)-semi-cubic graph with the smallest possible number of vertices. In
this work, we construct families of semi-cubic graphs for infinitely many values of m and even girth
g = {6, 8, 10, 12}. The cases g = {6, 8} are semi-cubic cages, including the unique 6-cage and 8-cage
when m = 3.

This problem is a generalization of the Cage Problem, where an (r, g)-cage is a r-regular graph of
fixed girth g; with the smallest possible number of vertices among all (r, g)-graphs (r-regular graphs
of girth g). There exists a simple lower bound due to Moore; an (r, g)-graph that attains this lower
bound is called a Moore cage. The Cage Problem consists of finding (r, g)-cages; or, as these graphs
exist for very limited sets of parameters (r, g), it consists of finding (r, g)-graphs with few vertices
(for more information of this problem see [8]).

A generalization of this problem has been studied for biregular graphs, denoted as (r,m; g)-graphs,
which generalize (r, g)-graphs by allowing vertices of two degrees, with cages generalizing to biregular
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cages. Specifically, given three positive integers {r,m, g} with 2 ≤ r < m and g ≥ 3 an (r,m; g)-cage
is a graph in which all vertices have degrees either r or m, has girth g and minimum order (it
has the smallest possible number of vertices among all (r,m; g)-graphs). We denote the order of
a (r,m; g)-biregular cage as n(r,m; g). Biregular graphs have been studied by many authors since
Chartrand, Gould and Kapoor proved their existence in [7].

2 Results
We construct families of biregular graphs of small order or biregular cages for fixed girth g when
r = 3 and m > 3, that is families of semi-cubic graphs of small order or cages of even girth using
two different techniques. The first technique generalizes a construction used in [1, 2] in which cubic
cages of girth g are glued together using remote vertices, that is vertices at distance g/2. The second
technique, which is the main content of this work, consists of constructing semi-cubic graphs of even
girth using voltage graphs. With this technique, we improve the graphs given using the “identifying
remote vertices” technique for girth g = {6, 8, 10, 12}. However, graphs with the same orders as
those from our voltage graph construction were obtained previously for girth g = {6, 8} (in [2,3,10])
using different techniques. Our principal contribution is for graphs of girth g = {10, 12}, where we
find new graphs with orders between the lower bounds given in [3] and the upper bounds given in
this paper found by identifying remote vertices.

The voltage graph construction gives us, naturally, the Heawood graph or (3; 6)-cage and the Tutte
graph or (3; 8)-cage, for m = 3 and g = {6, 8} respectively. These graphs occur as part of our
constructions of families of (3,m; 6)-cages of order 4m+ 2 and (3,m; 8)-graphs of order 9m+ 3. We
will detail how our constructions generalize the constructions given in [2, 10] in the corresponding
sections. As the authors state in [2], for girth 8 and m = {4, 5, 6, 7} these graphs, and also ours, are
cages, while for the rest of the values of m they are close to the lower bound n(3,m; 8) ≥ d 25m3 e+ 5
given for m ≥ 7.

In [3], the authors proved that for m much larger than r and even girth g ≡ 2 mod 4 there exist
infinite families of (r,m; g)-graphs with few vertices, with order close to the lower bound also given
in that paper. Specifically, for girth g = 6, the graphs described are biregular cages, because
they attain the lower bound given in [13]. However, in that paper, the authors did not give an
explicit construction of these graphs; they only proved their existence using a strong result about
Hamiltonian graphs and girths given by Sachs in 1963 ( [12]). In particular, for girth 10 the existence
of a semi-regular cage continues to be open for small values of m.

For girth g = 10, using the identifying remote vertices technique, we obtain graphs of order greater
than 22m + 2m/3. With the voltage graph construction, we produce graphs of order 20m + 2
for m ≥ 7 with 2 vertices of degree m and 20m vertices of degree 3. This family improves the
known upper bound for (3,m; 10)-cages and has a difference of less than 3m to the lower bound
n(3,m; 10) ≥ d 53m3 e+ 9 given in Lemma 3.4 in [3].

Finally, for girth 12, using the identifying remote vertices technique, we obtain graphs of order greater
than 41m+m/3. Using voltage graphs, we give an explicit construction of semi-cubic graphs of girth
12 using voltage graphs, giving us (3,m; 12)-graphs for m ≥ 10 of order 41m + 3 with 3 vertices of
degree m and 41m vertices of degree 3. This family improves the upper bound and produces graphs
with a difference of less than 5m to the lower bound n(3,m; 12) ≥ d 109m3 e+ 17 given in Lemma 3.4
in [3].

As we said the techniques used in this work are basically two different:
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• Construct semicubic graphs identifying copies of (r; g)-cages: We generalize Theorem 3, given
in [1], but only for cubic graphs. In this Theorem the authors identify copies of (r; g)-cages
at remote vertices, which are vertices at distance at least g/2. These techniques are also used
in [2] to construct biregular graphs of even girth.

Theorem 2.1. Let G be a (3; g)-graph of even girth and order ng with at least two vertices at
distance g/2. If m = 3k + t, we obtain (3,m; g)-graphs of order:

k(ng − 2) +


2 if t = 0

ng + 2 if t = 1

ng if t = 2

• Construct semi-cubic graphs using voltage graphs: A voltage graph G is a labeled directed
multigraph, often including loops and parallel edges, along with a group Γ; the labels on the
edges are elements of Γ (see [6, 9, 11] for standard references).

Let Γ be a cyclic group Zm with addition as the group operation. The derived graph Gm, also
called the lift graph, for a voltage graph with voltage group Zm is formed from G as follows:
each vertex v in G corresponds to m vertices in Gm, labeled v0, · · · , vm−1. An arrow in G from
v to w labeled a means that vertex vi and vertex wi+a are connected by an edge in Gm, with all
indices throughout the paper taken modulo m. Note that we could also have drawn an arrow
from w to v labeled −a and produced the same edges in the lift. If vertex v is incident with a
loop labeled a in G, then in Gm, vertices vi and vi+a are incident. The collection of directed
edges and loops in a voltage graph, along with their labels, is called a voltage assignment.
An unlabeled edge in a voltage graph is assumed to have voltage assignment 0, which we also
draw as undirected. In this work we introduce a "new" construction on voltage graphs, that
is the notion of a pinned vertex, which is a special vertex of degree 1 in the voltage graph.

We indicate this construction in the voltage graph using the symbol ∗ The notation v∗ w

over Zm, where vertex v∗ is a pinned vertex, indicates that in the lifted graph, there is a single
vertex labeled v∗, which is connected to each of the vertices wi, i = 0, . . . ,m − 1. It follows
that in a derived graph when the voltage group is Zm, the degree of a pinned vertex is m. The
figure shows an example of a voltage graph with two pinned vertices and the corresponding
derived graph over Z3. Notice that this graph is, in fact, Heawood Graph or the (3; 8)-cubic
cage.
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Remark 2.2. Given a voltage graph G with voltage group Zm with a collection of pinned
vertices v∗1 , . . . v

∗
s in which all vertices are degree r except the pinned vertices, which are of

degree 1, the derived graph Gm is a (r,m)-biregular graph with s vertices of degree m.

Lemma 2.3. If the sum of the labels in a non-reversing closed walk W in a voltage graph with
voltage group Zm is congruent to 0 mod m, and no smaller sub-walk has voltage sum congruent
to 0 mod m, then the lift of W forms a cycle.
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Using the previous we construct families of semicubic graphs of girth g ∈ {6, 8, 10, 12}. To
obtain these graphs, we describe two different families of voltage graphs called G4t, t ≥ 2, and
G4t+2 for t ≥ 1. We use these graphs for t ∈ {2, 3} in the first case and for t ∈ {1, 2} in the
second case to obtain families of semi-cubic graphs with girth g = 4t and g = 4t + 2.

For more information about this work, we invite the lector to consult [4].

3 Future work
Find voltage assignments to construct graphs of girth 10 and 12 for missing values of m.

Study the same problem with an odd degree. The last two authors are making progress on
this project [5].
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