ROUDNEFF'S CONJECTURE IN DIMENSION 4

Rangel Hernández Ortiz
Universitat Rovira I Virgili

Luis Montejano Cantoral
Universitat Rovira I Virgili

May 29, 2023

Abstract

J.-P. Roudneff conjectured in 1991 that every arrangement of $n \geq 2 d+1 \geq 5$ (pseudo) hyperplanes in the real projective space \mathbb{P}^{d} has at most $\sum_{i=0}^{d-2}\binom{n-1}{i}$ cells bounded by each hyperplane. The conjecture is true for $d=2,3$. The main result of this manuscript, is to show the validity of this conjecture for $d=4$.

Keywords: Roudneff's conjecture, Oriented Matroids, Arrangements of Hyperplanes.

1 Introduction

An Euclidean (resp. projective) d-arrangement of n hyperplanes $H(d, n)$ is a finite collection of hyperplanes in the Euclidean space \mathbb{R}^{d} (resp. the real projective space \mathbb{P}^{d}) such that no point belongs to every hyperplane of $H(d, n)$. Any arrangement $H(d, n)$ decomposes \mathbb{R}^{d} (resp. \mathbb{P}^{d}) into a d-dimensional cell complex. It is clear that any d-cell c of $H(d, n)$ has at most n facets (that is, ($d-1$)-cells). We say that c is a complete cell of $H(d, n)$ if c has exactly n facets, i.e., c is bounded by each hyperplane of $H(d, n)$.

Figure 1: An arrangement of 5 hyperplanes in \mathbb{P}^{2}. The gray cell is a complete cell.
The cyclic polytope of dimension d with n vertices, discovered by Carathéodory [2], is the convex hull in \mathbb{R}^{d} of $n \geq d+1 \geq 3$ different points $x\left(t_{1}\right), \ldots, x\left(t_{n}\right)$ of the moment curve $x: \mathbb{R} \longrightarrow \mathbb{R}^{d}, t \mapsto$ $\left(t, t^{2}, \ldots, t^{d}\right)$. Cyclic polytopes play an important role in the combinatorial convex geometry due to their connection with certain extremal problems, For example, the Upper Bound theorem due
to McMullen [8]. Cyclic arrangements are defined as the dual of the cyclic polytopes. As for cyclic polytopes, cyclic arrangements also have extremal properties. For instance, Shannon [9] has introduced cyclic arrangements on dimension d as examples of projective arrangements with a minimum number of cells with $(d+1)$ facets.

Let denote by $C_{d}(n)$ the number of complete cells of the cyclic arrangements on dimension d with n hyperplanes. Roudneff [6] proved that $C_{d}(n) \geq \sum_{i=0}^{d-2}\binom{n-1}{i}$ and that is tight for all $n \geq 2 d+1$. Moreover, he conjectured that in that case, cyclic arrangements have the maximum number of complete cells.

Conjecture 1.1. [6, Conjecture 2.2] Every arrangement of $n \geq 2 d+1 \geq 5$ (pseudo) hyperplanes in \mathbb{P}^{d} has at most $C_{d}(n)$ complete cells.

The conjecture is true for $d=2$ (that is, any arrangement of n pseudolines in \mathbb{P}^{2} contains at most one complete cell), Ramírez Alfonsín [5] proved the case $d=3$ and in [7] the authors proved it for arrangements arising from Lawrence oriented matroids.

In [3] calculated the exact number of complete cells of cyclic arrangements for any positive integers d and n with $n \geq d+1$, namely,

$$
\begin{equation*}
C_{d}(n)=\binom{d}{n-d}+\binom{d-1}{n-d-1}+\sum_{i=0}^{d-2}\binom{n-1}{i} \tag{1}
\end{equation*}
$$

Thus, in view of Roudneff's conjecture, Montejano and Ramírez Alfonsín [7] asked the following.
Question 1.2. Is it true that every (pseudo) arrangement of $n \geq d+1 \geq 3$ hyperplanes in \mathbb{P}^{d} has at most $C_{d}(n)$ complete cells?

The main result of this work is to answer affirmatively to Question 1.2 for $d=4$. As a consequence, we prove Roudneff's conjecture for dimension 4, giving more credit to the general conjecture. Moreover, with some simple observations, we can finish answering to Question 1.2 for $d=3$.

2 Results

Many of the combinatorial properties of arrangements of (pseudo) hyperplanes can be studied in the language of oriented matroids. The so-called Topological Representation Theorem, due to Folkman and Lawrence [4], states that the acyclic reorientation classes of oriented matroids on n elements and rank r (without loops or parallel elements) are in one-to-one correspondence with the classes of isomorphism of arrangements of n (pseudo) hyperplanes in \mathbb{P}^{r-1}.

An arrangement $H(d, n)$ is called simple if $n \geq d$ and every intersection of d pseudo-hyperplanes is a unique distinct point. It is known that simple arrangements correspond to uniform oriented matroids. The d-cells of any arrangement $H(d, n)$ are usually called topes since they are in one-toone correspondence with the topes of the oriented matroids M on n elements of rank $r=d+1$ of its corresponding acyclic reorientation class. It is known that a tope is a complete cell if reorienting any single element, the resulting sign-vector is also a tope.

Theorem 2.1. Each of the 135 acyclic reorientation classes of uniform rank 5 oriented matroids on 8 elements have at most $2 C_{4}(8)$ complete cells. Moreover, there is only 1 acyclic reorientation class with exactly $2 C_{4}(8)$ complete cells.

Theorem 2.2. Each of the 9276595 acyclic reorientation classes of uniform rank 5 oriented matroids on 9 elements have at most $2 C_{4}(9)$ complete cells. Moreover, the class of the alternating oriented matroid is the only one with exactly $2 C_{4}(9)$ complete cells.

Theorem 2.3. Every arrangement of $n \geq 5$ (pseudo) hyperplanes in \mathbb{P}^{4} has at most $C_{4}(n)$ complete cells.

3 Conclusions

Until now Roudneff's conjecture has been verified for dimensions $d=2,3,4$ and for arrangements arising from Lawrence oriented matroids. To prove Roudneff's conjecture for dimension 4, we used some ideas and techniques taken from oriented matroids.

References

[1] B. Björner, M. Las Vergnas, B. Sturmfels, and N. White, G. Ziegler. Oriented Matroids. 2 ed., Encyclopedia of Mathematics and its Applications, 1999.
[2] C. Carathéodory. Über den Variabilitätsbereich des Koeffizienten von Potentzreihen die gegberne Wette nicht annehmen. Math. Ann., 64:95-115, 1904.
[3] D. Forge and J. L. Ramírez Alfonsín. On counting the k-face cells of cyclic arrangements. Europ. J. Combinatorics, 22:307-312, 2001.
[4] J. Folkman and J. Lawrence. Oriented matroids. J. Comb. Theory Ser. B, 25:199-236, 1978.
[5] J. L. Ramírez Alfonsín. Cyclic arrangements and Roudneff's conjecture in the space. Inform. Process. Lett., 71:179-182, 1999.
[6] J.-P. Roudneff. Cells with many facets in arrangements of hyperplanes. Discrete Math., 98:185191, 1991.
[7] L.P. Montejano and J. L. Ramírez Alfonsín. Roudneffs Conjecture for Lawrence Oriented Matroids. Electronic Journal of Combinatorics, 22(2), P2-3, 1-14, 2015.
[8] P. McMullen. The maximal number of faces of a convex polytope. Mathematika, 17:179-184, 1970.
[9] R.W. Shannon. Simplicial cells in arrangements of hyperplanes. Geom. Dedicata, 8:179-187, 1979.

