UNIVERSAL γ_{2}-FIXERS TREES

Rita Zuazua
Universidad Nacional Autónoma de México e-mail: ritazuazua@ciencias.unam.mx

A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex $u \in(V(G)-D)$ and D is at most two. Let $\gamma_{2}(G)$ denote the size of a smallest distance 2-dominating set of G.

For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from two copies G_{1} and G_{2} of G by joining $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ if and only if $v=\pi(u)$. If $\gamma_{2}(\pi G)=\gamma_{2}(G)$ for any permutation π of $V(G)$, then G is called a universal γ_{2}-fixer. In this work we study the property to be universal γ_{2}-fixers for a tree T.

Joint work with Mercé Mora (Universitat Politécnica de Catalunya, Spain) and María Luz Puertas (Universidad de Almeria, Spain).

